姓名:高云
所在学科:统计学
职称:讲师
Email:gaoyun@bwu.edu.cn
个人信息
理学博士,毕业于南开大学陈省身数学研究所。主讲高等代数1和高等代数2。
主持并完成科研项目3项,在研2项。
研究领域
代数编码;量子纠错码;机器学习
代表性论文
共发表论文18篇,其中近年来有代表性的论文如下:
[1] Yun Gao, Jian Gao, Shilin Yang, Fang-Wei Fu. F_q-linear skew cyclic codes over F_q^2 and their applications of quantum codes construction. Journal of Applied Mathematics and Computing, 2022, 68: 349-361. (SCI)
[2] Yun Gao, Shilin Yang, Fang-Wei Fu. Some optimal cyclic F_q-linear F_q^t-codes. Advances in Mathematics of Communication, 2021, 15(3): 387-396. (SCI)
[3] Yun Gao, Weijun Fang, Fang-Wei Fu. On the algebraic structure of quasi-cyclic codes of index 1 1/2. Cryptography and Communications, 2020, 12(1): 1-18. (SCI)
[4] Yun Gao, Fang-Wei Fu. The dual code of any (δ+αu^2)-constacyclic code over F_{2^m}[u]/<u^4> of oddly even length. Discrete Mathematics, 2019, 342(8): 2179-2191. (SCI)
[5] Yun Gao, Jian Gao, Fang-Wei Fu. Quantum codes from cyclic codes over the ring F_q+v_1F_q+…+v_rF_q. Applicable Algebra in Engineering, Communication and Computing, 2019, 30(2): 161-174. (SCI)
[6] Yun Gao, Jian Gao, Fang-Wei Fu. Self-dual cyclic codes over Z_4[u]/<u^2-1> and their applications of Z_4-self-dual codes construction. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2018, 101-A(10): 1724-1729. (SCI)
[7] Yun Gao, Jian Gao, Tingting Wu, Fang-Wei Fu. 1-Generator quasi-cyclic and generalized quasi-cyclic codes over the ring Z_4[u]/<u^2-1>. Applicable Algebra in Engineering, Communication and Computing, 2017, 28(6): 457-467. (SCI)
[8] Yonglin Cao, Yun Gao. Repeated root cyclic F_q-linear codes over F_q^l. Finite Fields and Their Applications, 2015, 31: 202-227. (SCI)
[9] Yun Gao, Yonglin Cao. On the arithmetic of the endomorphism ring End(Z_p[x]/<f^-(x)>XZ_p^2[x]/<f(x)>). Applicable Algebra in Engineering, Communication and Computing, 2015, 26(3): 305-316. (SCI)
[10] Yun Gao, Zhaolin Jiang, Yanpeng Gong. On the determinants and inverses of skew circulant and skew left circulant matrices with Fibonacci and Lucas numbers. Wseas Transactions on Mathematics, 2013, 12(4): 472-481. (EI)
代表性著作
[1] 高云. 基于代数理论的纠错码和量子纠错码研究,首都经济贸易大学出版社,2023.
科研项目
(1) 北京市教委科技一般项目,性能良好的线性码与量子纠错码的构造,2023-01至2025-12,在研,主持。
(2) 横向项目,智能通信系统中信息数据的纠错与分析,2022-06至2023-06,结题,主持。
(3) 北京市人力资源和社会保障局,线性码及其在量子编码中的应用,2020-05至2021-06,结题,主持。
(4) 朝阳区人力资源和社会保障局,基于有限环上的线性码构造量子纠错码,2021-03至2021-06,结题,主持。